Novel Topology Optimization
Based on On-Off Method and Level Set Approach

Graduate School of Information Science and Technology
Hokkaido University

*Yuki Hidaka
Takahiro Sato
Hajime Igarashi
Outline of the presentation

I. Background and purpose
II. Present method
III. Optimization Results
IV. Conclusions
Background

- Shape optimization plays an important role in the development of electromagnetic devices.
- There are two approaches for shape optimizations, namely, parameter and topology optimizations.

Parameter optimization

\[x_1 \sim x_3 : \text{Material parameter} \]
Background

- Shape optimization plays an important role in the development of electromagnetic devices.
- There are two approaches for shape optimizations, namely, parameter and topology optimizations.

Parameter optimization

- Device shape are represented with design parameters
- Optimization is conducted by changing the parameters.

Topology optimization

- This method seeks for the optimum solutions directly varying the material shape without design parameters.

Dependence on experience and knowledge of engineers

Find novel shape
In the topology optimization on-off and level-set methods are widely used.

- Genetic Algorithm (GA) is widely employed for optimization process.
- Material shapes are expressed as binary pixel images
Background

- In the topology optimization on-off and level-set methods are widely used.

On-Off Method

- Genetic Algorithm (GA) is widely employed for optimization process.
- Material shapes are expressed as binary pixel images.

- We may obtain complicated shape because of huge search spaces.
In the topology optimization on-off and level-set methods are widely used.

- Material boundaries are expressed with level set function.
- We can have smooth boundaries and non-porous material region.
- This tends to fail into local optima because optimization is conducted based on gradient method.
Purpose

- Present Method

First step is the global search.
- GA has good performance for the global search
- One solution is selected

<table>
<thead>
<tr>
<th>Global Search</th>
<th>Genetic Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Off Method</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level Set Method</td>
</tr>
</tbody>
</table>

- Higher fitness
- Smooth boundaries
- Non-porous material regions
Purpose

- Present Method

First step is the global search.
- GA has good performance for the global search
- One solution is selected

Second step is the local search,
- The solution improved by level set method
- Smooth boundaries and non-porous material region

![Diagram]

Global Search
- On-Off Method
- Genetic Algorithm

Local Search
- Level Set Method
- Gradient Method

- Higher fitness
- Smooth boundaries
- non-porous material regions
Outline of the present method

Global Search with GA

Generations
0
1

Local Search Based on Level Set approach

Steps
0
1
n

Resultant shape is expressed by the level set function.
Global search method – On-Off Method –

- In order to suppress computational time, the micro genetic algorithms (μGA) is employed for optimization [1].
- To eliminate high frequency component, we applied the averaging filter for smoothing.

Local search method - Level Set Method -

- Material shape is expressed in terms of the level set functions.
- The level set functions are defined on each node.
- The level set function of any point in each element calculates by interpolating.

- D: Design region
- Ω: Material region
- $\partial \Omega$: Material boundary
- x: Point vector in D

$$\begin{align*}
\phi(x) = \begin{cases}
> 0 & (x \in \Omega) \\
= 0 & (x \in \partial \Omega \cap D) \\
< 0 & (x \in D \setminus \Omega)
\end{cases}
\end{align*}$$

ϕ_i: Level set function on each point
Local search method - Level Set Method -

- Material shape is expressed in terms of the level set functions.
- The level set functions are defined on each node.
- The level set function of any point in each element calculates by interpolating.

- D: Design region
- Ω: Material region
- $\partial \Omega$: Material boundary
- x: Point vector in D

Distance function from material boundary

\[
\phi(x) = \begin{cases}
> 0 & (x \in \Omega) \\
= 0 & (x \in \partial \Omega \cap D) \\
< 0 & (x \in D \setminus \Omega)
\end{cases}
\]

\(\phi_i\): Level set function on each point
Level-Set method – Distance function –

- Level set function is defined by

\[
\phi(x) = \begin{cases}
 d(x, \partial \Omega) & x \in \Omega \\
 0 & x \in \partial \Omega \\
 -d(x, \partial \Omega) & x \notin \Omega
\end{cases}
\]

where \(d \) denotes the shortest distance between \(x \) and boundary.

- The value of level-set function \(\phi \) is evaluated by

\[
\phi(x) = \min_{y \in \partial \Omega} d(x, y)
\]
Level-Set method – In the optimization –

- Material shapes are expressed with using level-set function and optimization is conducted by changing them.
- Level-set function is updated to reduce the value of objective function as follows:

\[
\phi_i^{n+1}(x) = \phi_i^n(x) + V_N
\]

\[
V_N = -\frac{df}{d \phi_i}
\]

\[
\frac{df}{d \phi_i} = \frac{\partial f}{\partial \phi_i} + \frac{\partial f}{\partial A} \cdot \frac{\partial A}{\partial \phi}
\]

- It is difficult to evaluate.

\(f \) : objective function
\(n \) : Iteration of optimization
\(V_N \) : update descent of the level-set functions
Material shapes are expressed with using level-set function and optimization is conducted by changing them.

Level-set function is updated to reduce the value of objective function as follows:

\[
\phi_i^{n+1}(x) = \phi_i^n(x) + V_N
\]

\[
V_N = -\frac{df}{d\phi_i}
\]

- In order to evaluate the gradient, adjoint variable method is employed.

\(f\) : objective function
\(n\) : Iteration of optimization
\(V_N\) : update descent of the level-set functions
Adjoint variable method

- Differentiate f with respect to level-set function

 a. Modified objective function defined by (1)

 b. Differentiation of Eqn. (1) with respect to ϕ_i leads to (2)

 c. Update the level-set function using V_N

\[
\phi_i^{n+1}(x) = \phi_i^n(x) + V_N
\]

\[
V_N = -\frac{df}{d\phi_i}
\]
Adjoint variable method

- Differentiate f with respect to level-set function

 \[
 \phi_i^{n+1}(x) = \phi_i^n(x) + V_N
 \]

 \[
 V_N = -\frac{df}{d\phi_i}
 \]

 a. Modified objective function defined by (1)

 b. Differentiation of Eqn. (1) with respect to ϕ_i leads to (2)

 c. Update the level-set function using V_N

\[
\hat{f} = f + z^T(KA-b) \quad (1)
\]
Adjoint variable method

- Differentiate \(f \) with respect to level-set function

 - a. Modified objective function defined by (1)

 - b. Differentiation of Eqn. (1) with respect to \(\phi_i \) leads to (2)

 - c. Update the level-set function using \(V_N \)

\[
\phi_i^{n+1}(x) = \phi_i^n(x) + V_N
\]

\[
V_N = -\frac{df}{d\phi_i}
\]

\[
\hat{f} = f + z^T(KA - b)
\]

\(f \approx \hat{f} \) if \(A \) exactly satisfies \(KA = b \)
Adjoint variable method

- Differentiate f with respect to level-set function

 \[\phi_i^{n+1}(x) = \phi_i^n(x) + V_N \]

 \[V_N = -\frac{df}{d\phi_i} \]

\[f = f + z^T (KA - b) \] (1)

\[\frac{df}{d\phi_i} = \frac{\partial f}{\partial \phi_i} + z^T \frac{\partial K}{\partial \phi_i} A + \left(z^T K + \frac{\partial f}{\partial A}\right) \frac{dA}{d\phi_i} \] (2)

In order to avoid evaluating this
Adjoint variable method

- Differentiate f with respect to level-set function

 a. Modified objective function defined by (1)

 b. Differentiation of Eqn. (1) with respect to ϕ_i leads to (2)

 c. Update the level-set function using V_N

\[
\phi_i^{n+1}(x) = \phi_i^n(x) + V_N
\]

\[
V_N = -\frac{df}{d\phi_i}
\]
Adjoint variable method

● Differentiate f with respect to level-set function

\[
\begin{align*}
\text{a. Modified objective function defined by (1)} & \\
\text{b. Differentiation of Eqn. (1) with respect to } \phi_i \text{ leads to (2)} & \\
\text{c. Update the level-set function using } V_N
\end{align*}
\]

\[
\phi_{i}^{n+1}(x) = \phi_{i}^{n}(x) + V_N
\]

\[
V_N = -\frac{df}{d\phi_i}
\]
Numerical example 1 - IPM-Motor -

- The purpose of this optimization is to maximize the torque average and minimize the torque ripple.
- Shape of the flux barrier in the rotor is optimized.

Optimization problem

\[F = -T_{AVG} + W * T_{rip} \rightarrow \text{Min.} \]

where

\[T_{rip} = \frac{T_{\text{max}} - T_{\text{min}}}{T_{AVG}} \]

- \(T_{AVG}\) : Torque average [Nm]
- \(T_{rip}\) : Torque ripple
- \(W\) : Weighting coefficient

Numerical example 1 - IPM-Motor -

- The purpose of this optimization is to maximize the torque average and minimize the torque ripple.
- Shape of the flux barrier in the rotor is optimized.

Optimization problem

\[F = -T_{AVG} + W \cdot T_{rip} \rightarrow \text{Min.} \]

where

\[T_{rip} = \frac{T_{max} - T_{min}}{T_{AVG}} \]

- \(T_{AVG} \): Torque average [Nm]
- \(T_{rip} \): Torque ripple
- \(W \): Weighting coefficient

IPM–Motor – Analysis conditions –

- Rotation speed (rpm) 3000
- Armature current (A) 600
- Phase of current (degree) 20
- Residual flux density of PM (T) 1.0
- Width of teeth (mm) 3.3
- Length of Coil (mm) 25.9
- Thickness of PM (mm) 2.5
- Width of PM (mm) 21

✓ Computational time : 10 [h]
✓ Number of unknown in FE analysis : about 2,000

Computational environment
- CPU : Xeon X5660 (6-Core 2.8GHz, 6 × 256KB+12MB, 1333MHz) × 2
- Main memory : 12GByte
Optimization results

On-Off method

<table>
<thead>
<tr>
<th>Torque average (Nm)</th>
<th>5.280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque ripple</td>
<td>0.184</td>
</tr>
<tr>
<td>Objective function</td>
<td>-0.806</td>
</tr>
</tbody>
</table>

On-Off + Level Set method

<table>
<thead>
<tr>
<th>Torque average (Nm)</th>
<th>5.309</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque ripple</td>
<td>0.112</td>
</tr>
<tr>
<td>Objective function</td>
<td>-1.018</td>
</tr>
</tbody>
</table>
Optimization results

<table>
<thead>
<tr>
<th>Torque average (Nm)</th>
<th>5.280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque ripple</td>
<td>0.184</td>
</tr>
<tr>
<td>Objective function</td>
<td>-0.806</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torque average (Nm)</th>
<th>5.309</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque ripple</td>
<td>0.112</td>
</tr>
<tr>
<td>Objective function</td>
<td>-1.018</td>
</tr>
</tbody>
</table>
Optimization results

On-Off method

\[T_{\text{max}} - T_{\text{min}} \]

Present method

\[T_{\text{max}} - T_{\text{min}} \]

<table>
<thead>
<tr>
<th>Torque average (Nm)</th>
<th>5.280</th>
<th>Torque average (Nm)</th>
<th>5.309</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque ripple</td>
<td>0.184</td>
<td>Torque ripple</td>
<td>0.112</td>
</tr>
<tr>
<td>Objective function</td>
<td>-0.806</td>
<td>Objective function</td>
<td>-1.018</td>
</tr>
</tbody>
</table>
Optimization results – Flux distribution –

<table>
<thead>
<tr>
<th>Method</th>
<th>Torque average (Nm)</th>
<th>Torque ripple</th>
<th>Objective function</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Off method</td>
<td>5.280</td>
<td>0.184</td>
<td>-0.806</td>
</tr>
<tr>
<td>On-Off + Level Set method</td>
<td>5.309</td>
<td>0.112</td>
<td>-1.018</td>
</tr>
</tbody>
</table>

F uphill grid pattern

On–Off method

On–Off + Level Set method
Optimization results – Flux distribution –

- Non Flux Barrier
- Flux Barrier

Due to the flux barriers, magnetic flux goes to the rotor surface.
Numerical example 2 - Magnetic shield -

- The present method is applied to magnetic shield model shown in figure.
- The purpose of this optimization is to minimize the flux density in Evaluated region and core volume created in design region.

Optimization Problem

\[
F(\phi) = W_M \frac{|B|_{\text{average}}}{10^{-5}} + \frac{S}{S_{\text{design}}} \rightarrow \text{Min.}
\]

- \(W_M\): weighting coefficient
- \(S\): volume of the core
- \(S_{\text{design}}\): volume of the design region
- \(B\): flux density of the evaluated region

![Diagram of magnetic shield model with optimization problem formulation and numerical example](image)
Numerical example 2 – Magnetic shield –

- The present method is applied to magnetic shield model shown in figure.
- The purpose of this optimization is to minimize the flux density in Evaluated region and core volume created in design region.

Optimization Problem

\[
F(\phi) = W_M \left| \frac{B_{\text{average}}}{10^{-5}} \right| + \frac{S}{S_{\text{design}}} \rightarrow \text{Min.}
\]

- \(W_M\): weighting coefficient
- \(S\): volume of the core
- \(S_{\text{design}}\): volume of the design region
- \(B\): flux density of the evaluated region

[Diagram showing a 2D section of a magnetic shield with labels for the evaluated region, design region, and a coil with 100[A \cdot \text{turn}].]
Magnetic shield - Optimization parameter -

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of elements in design region</td>
<td>2,488</td>
</tr>
<tr>
<td>Number of elements in analysis region</td>
<td>5,052</td>
</tr>
<tr>
<td>Generation of global search (μGA)</td>
<td>200</td>
</tr>
<tr>
<td>Generation of local search (Level Set)</td>
<td>200</td>
</tr>
<tr>
<td>Weighting coefficient: W_M</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- ✓ Computational time: 2[h]
- ✓ Number of unknown in FE analysis: about

Computational environment

- CPU: Xeon X5660 (6-Core 2.8GHz, 6 × 256KB+12MB, 1333MHz) × 2
- Main memory: 12GByte
Magnetic shield

| Method | $|B|_{\text{average}}/10^{-5}$ | Volume of the core (cm2) | Objective function |
|-----------------------------|------------------------------|-----------------------------|--------------------|
| On-Off method | 0.124 | 2.736 | 0.0678 |
| On-Off + Level Set method | 0.0990 | 2.776 | 0.0631 |

$|B|_{\text{average}}/10^{-5}$ indicates the average magnetic field strength. The volume of the core is given in cm2. The objective function values reflect the performance of the magnetic shield methods.
Magnetic shield

Global search
Magnetic shield

Local search
Magnetic shield

Objective Function

\[F(\phi) = W_M \left(\frac{|B|_{\text{average}}}{10^{-5}} \right) + \frac{S}{S_{\text{design}}} \]

- \(W_M = 0.8 \)
- \(W_M = 0.4 \)
- \(W_M = 0.3 \)
- \(W_M = 0.2 \)
Magnetic shield

\[W_M = 0.8 \]

\[W_M = 0.4 \]

\[W_M = 0.3 \]

\[W_M = 0.2 \]

Objective Function

\[F(\phi) = W_M \frac{|B|_{\text{average}}}{10^{-5}} + \frac{S}{S_{\text{design}}} \]
Magnetic shield \((W_M=0.4)\)

On-Off method

| \(|B|_{\text{average}}/10^{-5}\) | 0.0727 |
|---------------------------------|--------|
| Volume of the core (cm\(^2\)) | 5.864 |
| Objective function | 0.121 |

On-Off + Level Set method

| \(|B|_{\text{average}}/10^{-5}\) | 0.0541 |
|---------------------------------|--------|
| Volume of the core (cm\(^2\)) | 6.016 |
| Objective function | 0.116 |
Magnetic shield – Consideration of Branch

- Non protuberance
- A protuberance

- Due to protuberance occurs from out shield, flux goes to outside of the shield.
Conclusions

- We present a new topology optimization method which is based on the on-off and level set methods.
- In order to test this method, it is applied to numerical examples.
- The results show the present method can effectively find optimal solutions which have better performances.

Future works

- Applied to the 3-dimensional problems and other devices
- Introduce the multi-objective GA