

Topology Optimization Based on Deep Learning and toward Their Coevolution

Presented at JSST2018, Muroran, September 18, 2018

Hajime Igarashi Hokkaido University

Traveling Salesman Problem (TSP)

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city? (WiKi)

TSP for cities on concentric circles

Complexity of TSP

Number of combinations to visit n cities is found to be

$$C = \frac{1}{2}(n-1)!$$

The value of n! can be estimated by the Stirling approximation. For example, when n = 30, C is estimated to be

$$\log_{10} n! \approx n(\log_{10} n - \log_{10} e) \\= n(\log_{10} n - 0.43) \approx 30$$

Core i7(10⁶ Mips) executes an instruction for 10^{-12} sec. Thus, roughly speaking, 10^{18} sec = 10^9 years (10億年) lasts for 10^{30} computations, that is, 30 city-problem.

Shape Optimization

Example of Topology Optimization

- The present method is applied to magnetic shield model shown below.
- The purpose of this optimization is to minimize the flux density in the target region and core volume in the design region.

6

Global search

7

Local search

Y. Hidaka, T. Sato, H. Igarashi, "Topology Optimization Method Based on On–Off Method and Level Set Approach," IEEE Transactions on Magnetics, Volume:50, Issue:2, Article#7015204, 2014.

8

Methods for Topology Optimization

 \succ The microwave energy-harvesting device is composed of a receiving antenna and RF energy harvesting circuit.

Receiving antenna

Microwave energy-harvesting device

- We optimize the shape of receiving antenna and circuit parameters using optimization algorithm based on evolution technique.
- We consider harvesting energy from microwave transmitted by wireless rooter.
- The measured electric field intensity of <u>2.45GHz</u> microwave is about <u>0.2V/m</u>.

[1] Y. Kawahara, et al., "Power Harvesting from Microwavr Oven Electromagnetic Leakage", *Proc. The 2013 ACM international Joint Conference on Pervasive and Ubiquitous Computing, pp. 373-382, 2013.*

NGnet on/off method

Gaussian functions are uniformly deployed so that the design region is covered by the support of the Gaussians.

Design region

Gaussian function

$$G_i(\mathbf{x}) = \frac{1}{(2\pi\sigma)^{\frac{3}{2}}} \exp\left\{-\frac{1}{2\sigma^2} |\mathbf{x} - \mathbf{x}_i|^2\right\}$$

 σ :standard deviation

NGnet on/off method

Gaussian functions in the design region are normalized.

Design region

Normalization

$$b_i(\boldsymbol{x}) = G_i(\boldsymbol{x}) / \sum_{j=1}^N G_j(\boldsymbol{x})$$

NGnet on/off method

To determine the material attribute in the design region, we use the output of the shape function y(x).

The Gaussian functions are uniformly deployed in the unit region whose direction is represented by "F".

The single antenna consists of four unit regions with C_4 symmetry.

The array antenna consists of four 4×4 unit regions with C_4 symmetry.

(a) single

(b) array

Optimization Problem

The actual gain is maximized in the frequency period (1.5GHz, 3.5GHz).

 G_{actual} : actual gain G_{iso} : absolute gain Z_{a} : input impedance of antenna $Z_{\text{c}} = 50 \ \Omega$: input impedance of circuit $f_0 = 1.5 \ \text{GHz}$ $f_1 = 3.5 \ \text{GHz}$

Optimal Shapes

T. Mori, H. Igarashi, Topology optimization of wideband array antenna for microwave energy harvester, International Journal of Applied Electromagnetics and Mechanics, vol. 52, no. 1-2, pp. 631-639, 2016.

Optimization result

Computed and measured input impedance

Realization of optimized antenna

100mm

100mm

(a) front face

DC-

DC+

(b) back face with circuit

Manufactured Array Antenna

Measurement of output voltage

Operation test: RF harvester located near WiFi router

Voltage generated by harvester

From Hybrid Vehicle (HV) to Zero Emission Vehicle (ZEV)

For manufacturers with annual sales greater than 60,000 vehicles, at least 14% of the vehicles they produce and deliver for sale in California must meet ZEV requirements for 2015 through 2017.

Optimization of Wireless Power Transfer

Wireless power transfer (WPT) for EVs is expected to expand rapidly.

WPT system for EVs

Y. Otomo, Y. Gong, H. Igarashi, 3-D Topology Optimization of Magnetic Cores for Wireless Power Transfer with Double-Sided Shielding Coils, presented at OIPE2018, submitted to Int. J. AEM.

Optimization problem

Optimized and conventional core shapes

Coupling coefficient of each WPT core

We can see that the optimized WPT cores have the good tolerance in the forward misalignment and air gap.

Optimization of Interior Permanent Magnet (IPM) Motor

Initial individuals generated in the GA process

Optimization of Realistic IPM Motor

Maximization of torque and minimization of ripple

$$F = -T_{ave}/T_0 + 0.5T_{rp}/T_1 \rightarrow \text{minimize},$$

 T_{ave} : average torque, T_{rp} : torque ripple $T_0=10.8$ Nm, $T_1=8.5\%$: normalization constants

Optimization result

Realization of Optimized IPM Motor

Experimental results

It is found from the measurement that the torque ripple is suppressed while the average torque is kept almost unchanged.

$$T_{rip} = \frac{T_{max} - T_{min}}{T_{average}}$$

佐藤孝洋, 五十嵐一, 他, トポロジー最適化による埋込磁石同期モータの回転子形状最適化, 電気学会論文誌D, Vol. 135, No. 4, 291,-298, 2015

Real-coded Genetic Algorithm (with REX)

Finite element analysis has to be performed for $2 \times DoFs$ times a generation.

Surrogate Models (代理モデル)

Output

GoogLeNet***

Convolutional neural network developed by Google. This outperforms the conventional machine learning methods. Classifier(分類器)

The IPM motors with different shapes are classified with respect to the average torque T_{ave} and torque ripple T_{rip} .

Input: image of motor

*Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Convolutional Neural Network (CNN)

$$x_{ij} = \sum_{p,q} y_{i+p,j+q} h_{pq} + b$$

$$x_{ij} = \max_{p,q \in P_{ij}} y_{pq}$$

Deep Learning for Image Recognition

Internet

Deep Learning for Topology Optimization

Topology optimization

Generation of Data for DL with Topology Opt.

Training phase

Optimization phase

Training of CNN with the result for optimization problem A.

Optimization for different problems B, C, D... with CNN.

Training of CNN with the result for optimization with small number of individuals.

Optimization with large number of individuals with CNN.

Training of CNN. Optimization problems are generated for generalization of CNN.

Because the classification done by CNN is not perfect, posterior FE analysis is necessary for accurate evaluation. FE analysis is performed at high possibility for individuals in good classes.

Optimization of IPM motor

[4] Technical report of the institute of electrical engineering of Japan," Industry application society, No. 776, 2000.

Optimization Problem

$$F = \frac{T}{T^0} \rightarrow \max.$$

Sub.to.
$$N_{\text{area}} < 2$$

- *T*: Average torque
- *T*⁰: Average torque of original model
- N_{area} : The number of separated rotor cores

Optimization setting

The number of genes	42
The number of individuals	800
The number of children	160

Training of CNN for classification of torque and torque ripple

■: Iron ■: Permanent magnetic ■: Copper □: Air

H. Sasaki, H. Igarashi, to be presented at CEFC2018 and submitted to IEEE Trans. Magn.

Classification of torque and torque ripple

Classification of Torque						
CNN	FEM					
1.1	1.05~					
1.0	0.95~1.05					
0.9	0.85~0.95					
0.8	0.75~0.85					
0.7	0.65~0.75					
0.6	0.55~0.65					
0.5	0.45~0.55					
0.0	~0.45					

Classification of Ripple							
CNN	FEM						
0.6	~0.65						
0.7	0.65~0.75						
0.8	0.75~0.85						
0.9	0.85~0.95						
1.0	0.95~1.05						
1.1	1.05~1.15						
1.2	1.15~1.25						
1.3	1.25~						

Accuracy in torque

		Label by CNN \hat{T}_{ave}^{CNN}								
		0	0.5	0.6	0.7	0.8	0.9	1	1.1	TOTAL
	0	513	46	10	6	2	7	0	0	584
ave ^{FEM}	0.5	18	397	75	1	0	0	0	0	491
Label by FEM \hat{T}	0.6	0	83	392	79	0	0	0	0	554
	0.7	0	1	73	462	39	1	0	0	576
	0.8	0	0	0	32	377	29	0	0	438
	0.9	0	0	0	6	40	463	28	0	537
	1	0	0	0	0	0	21	368	26	415
	1.1	0	0	0	0	0	0	10	395	405
	TOTAL	531	527	550	586	458	521	406	421	4000

H. Sasaki, H. Igarashi, to be presented at CEFC2018 and submitted to IEEE Trans. Magn.

Examples

CNN: 0.50 FEM: 0.50

CNN: 0.70 FEM: 0.70

CNN: 0.90 FEM: 0.90

CNN: 1.10 FEM: 1.09

Torque ripple

		Label by CNN \hat{T}_{rip}^{CNN}									
		0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	TOTAL	
	0.6	797	246	36	1	11	10	12	19	1132	
p ^{FEM}	0.7	169	631	164	99	20	33	21	29	1166	
${f M} {f \hat T}_{ m rij}$	0.8	21	200	858	128	37	24	16	18	1302	
l by FEI	0.9	7	114	139	812	122	136	41	12	1383	
	1	8	27	44	148	821	125	61	15	1249	
abe	1.1	5	36	29	115	108	850	250	27	1420	
Ι	1.2	9	20	37	38	64	295	575	107	1145	
	1.3	21	19	32	26	33	36	240	796	1203	
	TOTAL	1037	1293	1339	1367	1216	1509	1216	1023	10000	

H. Sasaki, H. Igarashi, to be presented at CEFC2018 and submitted to IEEE Trans. Magn.

Torque ripple

Relationship between evaluation value by CNN and FEM

		Label by CNN \hat{T}_{rip} CNN								
		0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	TOTAI
	0.6	797	246	36	1	11	10	12	19	1132
p ^{FEM}	0.7	169	631	164	99	20	33	21	29	1166
Label by FEM $\hat{r}_{ m n_i}$	0.8	21	200	858	128	37	24	16	18	1302
	0.9	7	114	139	812	122	136	41	12	1383
	1	8	27	44	148	821	125	61	15	1249
	1.1	5	36	29	115	108	850	250	27	1420
	1.2	9	20	37	38	64	295	575	107	1145
	1.3	21	19	32	26	33	36	240	796	1203
	TOTAL	1037	1293	1339	1367	1216	1509	1216	1023	10000

Coevolution in biology

Wiki: In biology, **coevolution** occurs when two or more <u>species</u> reciprocally affect each other's <u>evolution</u>.

Toward Coevolution of DL and TO

Building a Strong Classifier with DL

Generator of Optimization Problem For generalization of CNN

Conclusions

Topology optimization leads to new design to various electric and electronic apparatus as well as other mechanical and chemical Systems.

Deep learning is promising to reduce the computational cost of Topology optimization.

Topology optimization and deep learning can make coevolution. Using the topology optimization, we would be able to realize *a strong classifier with generality* of electric motors as well as other devices.

